Our website uses cookies to enhance your browsing experience.
Accept
to the top
close form

Fill out the form in 2 simple steps below:

Your contact information:

Step 1
Congratulations! This is your promo code!

Desired license type:

Step 2
Team license
Enterprise license
** By clicking this button you agree to our Privacy Policy statement
close form
Request our prices
New License
License Renewal
--Select currency--
USD
EUR
* By clicking this button you agree to our Privacy Policy statement

close form
Free PVS‑Studio license for Microsoft MVP specialists
* By clicking this button you agree to our Privacy Policy statement

close form
To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

close form
I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

close form
check circle
Message submitted.

Your message has been sent. We will email you at


If you do not see the email in your inbox, please check if it is filtered to one of the following folders:

  • Promotion
  • Updates
  • Spam

Webinar: Evaluation - 05.12

>
>
>
V5013. OWASP. Storing credentials insid…
menu mobile close menu
Analyzer diagnostics
General Analysis (C++)
General Analysis (C#)
General Analysis (Java)
Micro-Optimizations (C++)
Diagnosis of 64-bit errors (Viva64, C++)
Customer specific requests (C++)
MISRA errors
AUTOSAR errors
OWASP errors (C++)
OWASP errors (C#)
Problems related to code analyzer
Additional information
toggle menu Contents

V5013. OWASP. Storing credentials inside source code can lead to security issues.

Aug 16 2021

The analyzer has detected data that may be confidential. Credentials can be used as such data.

If you store credentials in the source code, an intruder might access and make use of the data not intended for public use. Having access to a build, an attacker can use a disassembler to see all the string literals used in it. In the case of open-source projects, everything is even easier - an attacker can view even the source code.

Thus, all secret data can become publicly available. Vulnerabilities associated with insufficient security of confidential data are identified as a separate risk category in the OWASP Top 10 Application Security Risks 2017: A2:2017-Broken Authentication.

Consider an example:

bool LoginAsAdmin(const std::string &userName, 
                  const std::string &password) 
{
  if (userName == "admin" && password == "sRbHG$a%")
  {  
    ....
    return true;
  }

  return false;  
}

In this example, the password used to log in as an administrator is stored in the code. An attacker can easily get the authorization data and perform actions as a system administrator.

Instead of storing secret data in code, it is better to use, for example, storage classes. This way, data will be stored in encrypted form. Ordinary users do not have direct access to it. In this case, the code may look, for example, like this:

bool LoginAsAdmin(const DataStorage &secretStorage, 
                  const std::string &userName, 
                  const std::string &password) 
{
  var adminData = secretStorage.GetAdminData();

  if (   userName == adminData.UserName 
      && password == adminData.Password)
  {  
    ....
    return true;
  }

  return false;  
}

This diagnostic is classified as: