To get a trial key
fill out the form below
Team License (a basic version)
Enterprise License (an extended version)
* By clicking this button you agree to our Privacy Policy statement

Request our prices
New License
License Renewal
--Select currency--
USD
EUR
GBP
RUB
* By clicking this button you agree to our Privacy Policy statement

Free PVS-Studio license for Microsoft MVP specialists
* By clicking this button you agree to our Privacy Policy statement

To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

Message submitted.

Your message has been sent. We will email you at


If you haven't received our response, please do the following:
check your Spam/Junk folder and click the "Not Spam" button for our message.
This way, you won't miss messages from our team in the future.

>
>
>
V829. Lifetime of the heap-allocated va…
Analyzer diagnostics
General Analysis (C++)
General Analysis (C#)
General Analysis (Java)
Diagnosis of micro-optimizations (C++)
Diagnosis of 64-bit errors (Viva64, C++)
MISRA errors
AUTOSAR errors
OWASP errors (C#)
Additional information
Contents

V829. Lifetime of the heap-allocated variable is limited to the current function's scope. Consider allocating it on the stack instead.

Aug 18 2020

This diagnostic rule is based on the R.5 CppCoreGuidelines rule (Prefer scoped objects, don't heap-allocate unnecessarily).

Storage for a local variable is allocated dynamically and deallocated before execution leaves the function. In this case, it is better to stack-allocate the variable to avoid the overhead due to memory allocation and deallocation.

Consider the following example:

class Object { .... };
void DoSomething()
{
  auto obj = new Object;
  ....
  delete obj;
}

Since the variable exists only within the current scope, allocation can be avoided in most cases.

Fixed version:

void DoSomething()
{
  Object obj;
  ....
}

The warning is not issued if the previously allocated storage is not deallocated or if the address leaks outside. The following snippet demonstrates returning a pointer using a function's output parameter:

void DoSomething(Object** ppObj)
{
  auto obj = new Object;
  if (obj->good())
  {
    *ppObj = obj;
    return;
  }
  delete obj;
}
This website uses cookies and other technology to provide you a more personalized experience. By continuing the view of our web-pages you accept the terms of using these files. If you don't want your personal data to be processed, please, leave this site.
Learn More →
Accept