To get a trial key
fill out the form below
Team License (standard version)
Enterprise License (extended version)
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Request our prices
New License
License Renewal
--Select currency--
USD
EUR
GBP
RUB
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Message submitted.

Your message has been sent. We will email you at


If you haven't received our response, please do the following:
check your Spam/Junk folder and click the "Not Spam" button for our message.
This way, you won't miss messages from our team in the future.

>
>
>
V6095. Thread.sleep() inside synchroniz…
Analyzer Diagnostics
General Analysis (C++)
General Analysis (C#)
General Analysis (Java)
Diagnosis of micro-optimizations (C++)
Diagnosis of 64-bit errors (Viva64, C++)
MISRA errors
AUTOSAR errors
Additional information
Contents

V6095. Thread.sleep() inside synchronized block/method may cause decreased performance.

Sep 24 2020

The analyzer has detected a call of the 'Thread.sleep(....)' method inside a synchronized block or function.

When calling 'Thread.sleep(....)', the current thread is suspended without releasing the lock on the object's captured monitor. As a result, other threads attempting to synchronize on that object will have to wait idly for the sleeping thread to wake up. This may lead to performance drop and in some cases, even to a deadlock.

Consider the following example:

private final Object lock = new Object();
public void doSomething() {
  synchronized(lock) {
    ....
    Thread.sleep(1000);
    .... 
  }
}

It is better to use the 'lock.wait(....)' method instead of 'Thread.sleep()' to suspend the current thread for a specified time period and make it release the object's monitor to keep other threads from idling. However, keep in mind that in this case, the thread may be "woken up" before the specified timeout has elapsed. For that reason, you should have some condition checked to make sure that the thread has not been woken up earlier than intended:

private final Object lock = new Object();
public void doSomething() {
  synchronized(lock) {
    ....
    while(!ready()) {
      lock.wait(1000)
    }
    ....
  }
}

This diagnostic is classified as:

  • CERT-LCK09-J
This website uses cookies and other technology to provide you a more personalized experience. By continuing the view of our web-pages you accept the terms of using these files. If you don't want your personal data to be processed, please, leave this site.
Learn More →
Accept