To get a trial key
fill out the form below
Team license
Enterprise license
** By clicking this button you agree to our Privacy Policy statement

Request our prices
New License
License Renewal
--Select currency--
USD
EUR
RUB
* By clicking this button you agree to our Privacy Policy statement

Free PVS-Studio license for Microsoft MVP specialists
** By clicking this button you agree to our Privacy Policy statement

To get the licence for your open-source project, please fill out this form
** By clicking this button you agree to our Privacy Policy statement

I am interested to try it on the platforms:
** By clicking this button you agree to our Privacy Policy statement

Message submitted.

Your message has been sent. We will email you at


If you haven't received our response, please do the following:
check your Spam/Junk folder and click the "Not Spam" button for our message.
This way, you won't miss messages from our team in the future.

>
>
>
V2011. Consider inspecting signed and u…
Analyzer diagnostics
General Analysis (C++)
General Analysis (C#)
General Analysis (Java)
Diagnosis of micro-optimizations (C++)
Diagnosis of 64-bit errors (Viva64, C++)
Customer specific requests (C++)
MISRA errors
AUTOSAR errors
OWASP errors (C#)
Problems related to code analyzer
Additional information
Contents

V2011. Consider inspecting signed and unsigned function arguments. See NN argument of function 'Foo' in derived class and base class.

Jul 24 2014

This diagnostic rule was added on our users' request. It is used to detect the following issue: the base class has a virtual function with one of the arguments of the signed type. The derived class contains the same function but with an unsigned argument. Or you may get a reverse situation: the base class contains an unsigned argument while the derived contains a signed one.

This diagnostic is used to detect errors when – during a large refactoring – the programmer changes the function type in one of the classes but forgets to change it in the other class.

For example:

struct Q            { virtual int x(unsigned) { return 1; } };
struct W : public Q {         int x(int)      { return 2; } };

The code should actually look like this:

struct Q            { virtual int x(unsigned) { return 1; } };
struct W : public Q {         int x(unsigned) { return 2; } };

If your base class has two 'x' functions with the arguments of the 'int' and "unsigned' types, the analyzer won't generate the V2011 warning.

Unicorn with delicious cookie
Our website uses cookies to enhance your browsing experience. Would you like to learn more?
Accept