To get a trial key
fill out the form below
Team License (standard version)
Enterprise License (extended version)
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Request our prices
New License
License Renewal
--Select currency--
USD
EUR
GBP
RUB
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Message submitted.

Your message has been sent. We will email you at


If you haven't received our response, please do the following:
check your Spam/Junk folder and click the "Not Spam" button for our message.
This way, you won't miss messages from our team in the future.

>
>
>
V114. Dangerous explicit type pointer c…
Analyzer Diagnostics
General Analysis (C++)
General Analysis (C#)
General Analysis (Java)
Diagnosis of micro-optimizations (C++)
Diagnosis of 64-bit errors (Viva64, C++)
MISRA errors
AUTOSAR errors
Additional information
Contents

V114. Dangerous explicit type pointer conversion.

Dec. 15, 2011

The analyzer found a possible error related to the dangerous explicit type conversion of a pointer of one type to a pointer of another. The error may consist in the incorrect work with the objects to which the analyzer refers.

Let's examine an example. It contains the explicit type conversion of a 'int' pointer to a 'size_t' pointer.

int array[4] = { 1, 2, 3, 4 };
size_t *sizetPtr = (size_t *)(array);
cout << sizetPtr[1] << endl;

As you can see the result of the program output is different in 32-bit and 64-bit variants. On the 32-bit system the access to the array items is correct for the sizes of 'size_t' and 'int' types coincide and we see the output "2". On the 64-bit system we got "17179869187" in output for it is this value 17179869187 which stays in the first item of array 'sizetPtr'.

The correction of the situation described consists in refusing dangerous type conversions with the help of the program modernization. Another variant is to create a new array and to copy into it the values from the original array.

Of course not all the explicit conversions of pointer types are dangerous. In the following example the work result does not depend on the system capacity for 'enum' type and 'int' type have the same size on the 32-bit system and the 64-bit system as well. So the analyzer won't show any warning messages on this code.

int array[4] = { 1, 2, 3, 4 };
enum ENumbers { ZERO, ONE, TWO, THREE, FOUR };
ENumbers *enumPtr = (ENumbers *)(array);
cout << enumPtr[1] << endl;

Additional materials on this topic:

This website uses cookies and other technology to provide you a more personalized experience. By continuing the view of our web-pages you accept the terms of using these files. If you don't want your personal data to be processed, please, leave this site.
Learn More →
Accept