Our website uses cookies to enhance your browsing experience.
Accept
to the top
close form

Fill out the form in 2 simple steps below:

Your contact information:

Step 1
Congratulations! This is your promo code!

Desired license type:

Step 2
Team license
Enterprise license
** By clicking this button you agree to our Privacy Policy statement
close form
Request our prices
New License
License Renewal
--Select currency--
USD
EUR
* By clicking this button you agree to our Privacy Policy statement

close form
Free PVS‑Studio license for Microsoft MVP specialists
* By clicking this button you agree to our Privacy Policy statement

close form
To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

close form
I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

close form
check circle
Message submitted.

Your message has been sent. We will email you at


If you haven't received our response, please do the following:
check your Spam/Junk folder and click the "Not Spam" button for our message.
This way, you won't miss messages from our team in the future.

Webinar: Parsing C++ - 10.10

>
>
>
V531. The sizeof() operator is multipli…
menu mobile close menu
Analyzer diagnostics
General Analysis (C++)
General Analysis (C#)
General Analysis (Java)
Micro-Optimizations (C++)
Diagnosis of 64-bit errors (Viva64, C++)
Customer specific requests (C++)
MISRA errors
AUTOSAR errors
OWASP errors (C#)
Problems related to code analyzer
Additional information
toggle menu Contents

V531. The sizeof() operator is multiplied by sizeof(). Consider inspecting the expression.

Nov 19 2010

Code where a value returned by the sizeof() operator is multiplied by another sizeof() operator most always signals an error. It is unreasonable to multiply the size of one object by the size of another object. Such errors usually occur when working with strings.

Let's study a real code sample:

TCHAR szTemp[256];
DWORD dwLen =
  ::LoadString(hInstDll, dwID, szTemp,
               sizeof(szTemp) * sizeof(TCHAR));

The LoadString function takes the buffer's size in characters as the last argument. In the Unicode version of the application, we will tell the function that the buffer's size is larger than it is actually. This may cause a buffer overflow. Note that if we fix the code in the following way, it will not become correct at all:

TCHAR szTemp[256];
DWORD dwLen =
  ::LoadString(hInstDll, dwID, szTemp, sizeof(szTemp));

Here is a quotation from MSDN on this topic:

"Using this function incorrectly can compromise the security of your application. Incorrect use includes specifying the wrong size in the nBufferMax parameter. For example, if lpBuffer points to a buffer szBuffer which is declared as TCHAR szBuffer[100], then sizeof(szBuffer) gives the size of the buffer in bytes, which could lead to a buffer overflow for the Unicode version of the function. Buffer overflow situations are the cause of many security problems in applications. In this case, using sizeof(szBuffer)/sizeof(TCHAR) or sizeof(szBuffer)/sizeof(szBuffer[0]) would give the proper size of the buffer."

This is the correct code:

TCHAR szTemp[256];
DWORD dwLen =
  ::LoadString(hInstDll, dwID, szTemp,
               sizeof(szTemp) / sizeof(TCHAR));

Here is another correct code:

const size_t BUF_LEN = 256;
TCHAR szTemp[BUF_LEN];
DWORD dwLen =
  ::LoadString(hInstDll, dwID, szTemp, BUF_LEN);

This diagnostic is classified as:

You can look at examples of errors detected by the V531 diagnostic.