Our website uses cookies to enhance your browsing experience.
Accept
to the top
close form

Fill out the form in 2 simple steps below:

Your contact information:

Step 1
Congratulations! This is your promo code!

Desired license type:

Step 2
Team license
Enterprise license
** By clicking this button you agree to our Privacy Policy statement
close form
Request our prices
New License
License Renewal
--Select currency--
USD
EUR
* By clicking this button you agree to our Privacy Policy statement

close form
Free PVS‑Studio license for Microsoft MVP specialists
* By clicking this button you agree to our Privacy Policy statement

close form
To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

close form
I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

close form
check circle
Message submitted.

Your message has been sent. We will email you at


If you do not see the email in your inbox, please check if it is filtered to one of the following folders:

  • Promotion
  • Updates
  • Spam

Webinar: Evaluation - 05.12

>
>
>
V1056. The predefined identifier '__fun…
menu mobile close menu
Analyzer diagnostics
General Analysis (C++)
General Analysis (C#)
General Analysis (Java)
Micro-Optimizations (C++)
Diagnosis of 64-bit errors (Viva64, C++)
Customer specific requests (C++)
MISRA errors
AUTOSAR errors
OWASP errors (C++)
OWASP errors (C#)
Problems related to code analyzer
Additional information
toggle menu Contents

V1056. The predefined identifier '__func__' always contains the string 'operator()' inside function body of the overloaded 'operator()'.

Apr 16 2020

The analyzer has detected the '__func__' identifier in the body of the overloaded '()' operator.

Consider the following example:

class C
{
  void operator()(void)
  {
    std::cout << __func__ << std::endl;
  }
};

void foo()
{
  C c;
  c();
}

This code will output the string 'operator()'. This behavior may seem reasonable in code like this, so let's take a look at a less trivial example:

void foo()
{
  auto lambda = [] () { return __func__; };
  std::cout << lambda() << std::endl;
}

It is important to remember that '__func__' is not a typical variable, so the following versions will not work as intended and the program will be still outputting the string 'operator()':

void fooRef()
{
  auto lambda = [&] () { return __func__; };
  std::cout << lambda() << std::endl;
}
void fooCopy()
{
  auto lambda = [=] () { return __func__; };
  std::cout << lambda() << std::endl;
}

In the case of lambdas, this can be fixed by passing '__func__' explicitly using a capture list:

void foo()
{
  auto lambda = [func = __func__] () { return func; };
  std::cout << lambda() << std::endl;
}

To get full-fledged output of the function name even inside the overloaded 'operator()' or lambdas, you can use the platform/compiler-specific macros. The MSVC compiler provides three such macros:

  • '__FUNCTION__' – outputs the function name including its namespace. For example, this is what we will get for a lambda inside the main function: 'main::<lambda_....>::operator ()';
  • '__FUNCSIG__' – outputs the full function signature. Similarly, it can be helpful when combined with a lambda: 'auto __cdecl main::<lambda_....>::operator ()(void) const';
  • '__FUNCDNAME__' – outputs the decorated name of the function. This information is quite specific, so it cannot fully replace '__func__'.

Clang and GCC provide the following macros:

  • '__FUNCTION__' – outputs the same name that the standard '__func__' does;
  • '__PRETTY_FUNCTION__' – outputs the full function signature. For example, you will get the following output for a lambda: 'auto main()::(anonymous class)::operator()() const'.