Our website uses cookies to enhance your browsing experience.
Accept
to the top
close form

Fill out the form in 2 simple steps below:

Your contact information:

Step 1
Congratulations! This is your promo code!

Desired license type:

Step 2
Team license
Enterprise license
** By clicking this button you agree to our Privacy Policy statement
close form
Request our prices
New License
License Renewal
--Select currency--
USD
EUR
* By clicking this button you agree to our Privacy Policy statement

close form
Free PVS‑Studio license for Microsoft MVP specialists
* By clicking this button you agree to our Privacy Policy statement

close form
To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

close form
I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

close form
check circle
Message submitted.

Your message has been sent. We will email you at


If you do not see the email in your inbox, please check if it is filtered to one of the following folders:

  • Promotion
  • Updates
  • Spam

Webinar: Evaluation - 05.12

>
>
>
V1039. Character escape is used in mult…
menu mobile close menu
Analyzer diagnostics
General Analysis (C++)
General Analysis (C#)
General Analysis (Java)
Micro-Optimizations (C++)
Diagnosis of 64-bit errors (Viva64, C++)
Customer specific requests (C++)
MISRA errors
AUTOSAR errors
OWASP errors (C++)
OWASP errors (C#)
Problems related to code analyzer
Additional information
toggle menu Contents

V1039. Character escape is used in multicharacter literal. This causes implementation-defined behavior.

Jun 20 2019

The analyzer has detected a multicharacter literal containing both characters and character escapes.

Multicharacter literals are implementation-defined, so different compilers handle them differently. For example, GCC and Clang evaluate them based on the order of characters in the literal, while MSVC moves the characters around depending on their type (ordinary or escape).

Consider the following example. The code below will behave differently when complied with different compilers:

#include <stdio.h>

void foo(int c)
{
  if (c == 'T\x65s\x74')                       // <= V1039
  {
    printf("Compiled with GCC or Clang.\n");
  }
  else
  {
    printf("It's another compiler (for example, MSVC).\n");
  }
}

int main(int argc, char** argv)
{
  foo('Test');
  return 0;
}

The program could output different messages depending on what compiler it has been compiled with.

This will not affect a project that uses one particular compiler, but you may encounter problems when trying to port it. For this reason, multicharacter literals should be replaced with simple numeric constants. For example, 'Test' should be changed to '0x54657374'.

The variation across compilers in how they treat multicharacter literals can be shown using sequences of 3 and 4 characters, for example, 'GHIJ' and 'GHI', and having the program output their representation in memory after compilation.

Output after compilation with Visual C++:

Hex codes are: G(47) H(48) I(49) J(4A)
              'GHIJ' : JIHG
  '\x47\x48\x49\x4A' : GHIJ
     'G\x48\x49\x4A' : HGIJ
        'GH\x49\x4A' : JIHG
        'G\x48I\x4A' : JIHG
           'GHI\x4A' : JIHG
               'GHI' : IHG
      '\x47\x48\x49' : GHI
            'GH\x49' : IHG
         '\x47H\x49' : HGI
            '\x47HI' : IHG

Output after compilation with GCC or Clang:

Hex codes are: G(47) H(48) I(49) J(4A)
              'GHIJ' : JIHG
  '\x47\x48\x49\x4A' : JIHG
     'G\x48\x49\x4A' : JIHG
        'GH\x49\x4A' : JIHG
        'G\x48I\x4A' : JIHG
           'GHI\x4A' : JIHG
               'GHI' : IHG
      '\x47\x48\x49' : IHG
            'GH\x49' : IHG
         '\x47H\x49' : IHG
            '\x47HI' : IHG