Our website uses cookies to enhance your browsing experience.
Accept
to the top
close form

Fill out the form in 2 simple steps below:

Your contact information:

Step 1
Congratulations! This is your promo code!

Desired license type:

Step 2
Team license
Enterprise license
** By clicking this button you agree to our Privacy Policy statement
close form
Request our prices
New License
License Renewal
--Select currency--
USD
EUR
* By clicking this button you agree to our Privacy Policy statement

close form
Free PVS‑Studio license for Microsoft MVP specialists
* By clicking this button you agree to our Privacy Policy statement

close form
To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

close form
I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

close form
check circle
Message submitted.

Your message has been sent. We will email you at


If you do not see the email in your inbox, please check if it is filtered to one of the following folders:

  • Promotion
  • Updates
  • Spam

Webinar: Evaluation - 05.12

>
>
>
V1011. Function execution could be defe…
menu mobile close menu
Analyzer diagnostics
General Analysis (C++)
General Analysis (C#)
General Analysis (Java)
Micro-Optimizations (C++)
Diagnosis of 64-bit errors (Viva64, C++)
Customer specific requests (C++)
MISRA errors
AUTOSAR errors
OWASP errors (C++)
OWASP errors (C#)
Problems related to code analyzer
Additional information
toggle menu Contents

V1011. Function execution could be deferred. Consider specifying execution policy explicitly.

Mar 16 2018

The analyzer had discovered the use of 'std::async' function, which can behave differently from what the developer had expected. The 'std::async' function receives the following arguments: the function to be executed, its arguments and an optional flag which influences the execution policy of 'std::async'. The function returns an 'std::future' instance, the value of which will be assigned after the function finishes its execution.

The behavior of 'std::async' depends upon the flags it receives in the following way:

1) 'std::launch::async' - an instance of the 'thread' class will be created immediately, using the function and its arguments as the arguments of new thread. It means that 'std::async' will encapsulate the creation of a thread and 'std::future' and provides a way to execute such these actions in a single line of code.

2) 'std::launch::deferred' – the behavior of the function will change - there will be no asynchronous execution. Instead of executing the function in a different thread, it will be saved, together with all of its arguments, to the 'std::future' instance, so it can be called later. This call will happen when someone invokes 'get' or 'wait' methods of this 'future' instance returned by 'std::async'. The execution will be performed in the same thread that called get\wait. This behavior is, in fact, a the deferred execution.

3) The flag is not specified (std::launch::async | std::launch::deferred) - in this case, one of the two execution policies specified above will be selected automatically. Which one? It is unspecified and depends on the implementation.

If the execution policy is not specified when executing the 'std::async' function, the third case is used. To help avoid possible uncertainty in the behavior of this function, analyzer detects such cases.

Future<int> foo = std::async(MyFunction, args...);

After this call, there is a possibility that different systems with different implementations of standard libraries will have different behavior.

We recommend taking this into account and solving this potential behavioral uncertainty by explicitly specifying the execution policy with the function's first parameter. Reliable way of explicitly specifying the execution policy is the following:

Future<int> foo = std::async(launch::async, MyFunction, args...)

This diagnostic is classified as: