Our website uses cookies to enhance your browsing experience.
to the top
close form

Fill out the form in 2 simple steps below:

Your contact information:

Step 1
Congratulations! This is your promo code!

Desired license type:

Step 2
Team license
Enterprise license
** By clicking this button you agree to our Privacy Policy statement
close form
Request our prices
New License
License Renewal
--Select currency--
* By clicking this button you agree to our Privacy Policy statement

close form
Free PVS‑Studio license for Microsoft MVP specialists
* By clicking this button you agree to our Privacy Policy statement

close form
To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

close form
I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

close form
check circle
Message submitted.

Your message has been sent. We will email you at

If you haven't received our response, please do the following:
check your Spam/Junk folder and click the "Not Spam" button for our message.
This way, you won't miss messages from our team in the future.

PVS-Studio team: switching to Clang imp…

PVS-Studio team: switching to Clang improved PVS-Studio C++ analyzer's performance

May 31 2021

From the earliest days, we used MSVC to compile the PVS-Studio C++ analyzer for Windows - then, in 2006, known as Viva64, version 1.00. With new releases, the analyzer's C++ core learned to work on Linux and macOS, and we modified the project's structure to support CMake. However, we kept using the MSVC compiler to build the analyzer's version for Windows. Then, in 2019, on April 29th, Visual Studio developers announced they had included the LLVM utilities and Clang compiler in the IDE. And just recently we've gotten around to try it.


Performance testing

We chose SelfTester - our utility for the analyzer's regression testing - as a benchmark. The utility analyzes a set of various projects and compares analysis results with reference values. For example, if the analyzer's core analysis showed new false positives or stopped showing applicable ones, this would mean the latest changes to the core caused some regression that needs to be fixed. To learn more about SelfTester, see the following article: "The Best is the Enemy of the Good".

The test base's projects vary in code volume quite a bit. Normally, when the running computer or test server is not overloaded, it takes SelfTester the same time - within the margin of error - to test the core of the same version. If the analyzer's productivity suffers, this significantly increases the overall testing time.

After we switched the C++ analyzer to the Clang compiler, SelfTester runs C++ core tests 11 minutes faster.


This means a 13% performance gain. That's quite significant, considering the only change was the compiler, don't you think?

Of course, there are disadvantages - but those are minor. The distribution's build slowed down by 8 minutes, and the executable file's size increased by 1.6 Mbytes - of those, 500 Kbytes come from static runtime linking.


Apparently, better performance is achieved by means of a longer LTO stage, that takes up most of the build time, and more aggressive loop unrolling and function inlining.

Now I'd like to talk more about issues we faced during the transition.

Generate a build for Clang

CMake scripts allow us to build code with all mainstream compilers, for required operating systems.

First, we used Visual Studio Installer to install the Clang compiler's components.


Clang-cl is a so-called "driver" that allows you to use clang with parameters from cl.exe. We expected clang-cl to interact with MSBuild transparently, almost like a native compiler.

Alternatively, we could have used official builds from the LLVM project. You can find them in their GitHub repository. However, they require an additional plugin so that Visual Studio could find the compilers. We chose the first route, so the toolset in examples below will be clangcl. If we used LLVM, the toolset name would have been llvm instead.

We specified toolchain in the solution generation command for Visual Studio:

cmake -G "Visual Studio 16 2019" -Tclangcl <src>

Alternatively, we could use GUI:


Then we opened the resulting project, built it - and got all these errors.


Fix the build

Although clang-cl looks and behaves like CL, under the hood it is a completely different compiler, with its own quirks.

We usually don't ignore compiler warnings, which is why we use /W4 and /WX flags. However, Clang may generate additional warnings that prevent the build from succeeding. That's why we temporarily deactivated them:


  if (WIN32)

Now that's better.

The GCC and Clang compilers, as opposed to MSVC for Windows, support the int128 type out-of-the-box. This is why a while ago PVS-Studio received an Int128 wrapper for Windows. The wrapper is written as inline assembly code wrapped in ifdef - in the best C/C++ traditions. Then we fixed preprocessor definitions. We replaced the code below

if (MSVC)
else ()
endif ()

with the following:

else ()
endif ()

Usually, the compiler driver, be it clang.exe or clang-cl.exe, passes a library with built-ins to the linker (lld). However, in this case MSBuild controlled the linker directly and did not know that the library was required. Consequently, the driver had no way to pass flags to the linker. So we handled the situation manually.




Yay! The build worked! However, when running tests, we encountered many segmentation faults:


The debugger was showing some strange value in IntegerInterval, while the problem was a bit further:


The data-flow mechanism's structures actively used the Int128 type we discussed earlier. The structures employed SIMD instructions to work with this type. The crashes were caused by an unaligned address:


The MOVAPS instruction moved a set of floating-point numbers to SIMD operation registers. For this operation to be successful, the address must be aligned and must end with 0. However, the address ended in 8. Here we had to help the compiler by setting the correct alignment:

class alignas(16) Int128

Looks good.

The last problem was prompted by Docker containers:


When generating builds for MSVC, we'd always employ static runtime linking that we had switched to dynamic for our Clang experiments. It turned out that Microsoft Visual C++ Redistributables were not included into Windows images by default. We decided to switch back to static linking so that our users wouldn't encounter the same challenges.


Although the project's preparation took a while, we were satisfied that the analyzer's performance grew by over 10%.

We will use Clang to build future releases of PVS-Studio for Windows.

Comments (0)

Next comments next comments
close comment form