To get a trial key
fill out the form below
Team License (a basic version)
Enterprise License (an extended version)
* By clicking this button you agree to our Privacy Policy statement

Request our prices
New License
License Renewal
--Select currency--
* By clicking this button you agree to our Privacy Policy statement

Free PVS-Studio license for Microsoft MVP specialists
* By clicking this button you agree to our Privacy Policy statement

To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

Message submitted.

Your message has been sent. We will email you at

If you haven't received our response, please do the following:
check your Spam/Junk folder and click the "Not Spam" button for our message.
This way, you won't miss messages from our team in the future.

On the Difference Between strlcat and s…

On the Difference Between strlcat and strncat

Jul 16 2019

While we are working hard on writing big articles on code check of the Haiku operating system, I'd like to give an example of an often found error with strncat function taken from that project. It might be useful for all the C and C++ developers to refresh their knowledge on this topic.


Description of the Functions

The strncat function is used for string concatenation and has the following signature:

char *strncat(char *dest, const char *src, size_t n);

It adds not more than n symbols from the src string to the dest string however, the src string may not end with terminal null. There should be enough space in the dest string, otherwise, program behavior becomes unpredictable because of the buffer overflow for the function does not produce borders control.

The strlcat function is used for string concatenation and, compared to strncat function, it's safer to use one. The strlcat function has the following signature:

size_t strlcat(char *dst, const char *src, size_t size)

Unlike the other functions, it takes the whole buffer size and guarantees the presence of terminal symbol at the result. For the strlcat function proper operation, you need to transmit only null-terminated strings.

Bug in Haiku OS

V645 The 'strncat' function call could lead to the 'output' buffer overflow. The bounds should not contain the size of the buffer, but a number of characters it can hold. NamespaceDump.cpp 101

static void
dump_acpi_namespace(acpi_ns_device_info *device, char *root, int indenting)
  char result[255];
  char output[320];
  char tabs[255] = "";
  char hid[16] = "";
  int i;
  size_t written = 0;
  for (i = 0; i < indenting; i++)
    strlcat(tabs, "|    ", sizeof(tabs));

  strlcat(tabs, "|--- ", sizeof(tabs));
  void *counter = NULL;
  while (....) {
    uint32 type = device->acpi->get_object_type(result);
    snprintf(output, sizeof(output), "%s%s", tabs, result + depth);
    switch(type) {
        strncat(output, "     INTEGER", sizeof(output));
      case ACPI_TYPE_STRING:
        strncat(output, "     STRING", sizeof(output));
      case ACPI_TYPE_BUFFER:
        strncat(output, "     BUFFER", sizeof(output));
        strncat(output, "     PACKAGE", sizeof(output));
      case ACPI_TYPE_MUTEX:
        strncat(output, "     MUTEX", sizeof(output));
      case ACPI_TYPE_REGION:
        strncat(output, "     REGION", sizeof(output));
      case ACPI_TYPE_POWER:
        strncat(output, "     POWER", sizeof(output));
        strncat(output, "     PROCESSOR", sizeof(output));
        strncat(output, "     THERMAL", sizeof(output));
        strncat(output, "     BUFFER_FIELD", sizeof(output));
      case ACPI_TYPE_ANY:

The analyzer detected the mixed code consisting of strlcat and strncat functions calls. However, the strlcat function calls are correct:

char tabs[255] = "";
strlcat(tabs, "|--- ", sizeof(tabs));

they transmit null-terminated string and the whole buffer size.

At the same time, multiple strncat calls in a loop are false and may lead to an error:

char output[320];
strncat(output, "     INTEGER", sizeof(output));

A program may operate sustainably for a long time if short strings entry the function but the buffer limit may be exceeded quickly in the loop.


We have already sent the report to the Haiku OS developers without waiting for the major big articles to be published, and they have already begun fixing the bugs:

Popular related articles
The Last Line Effect

Date: May 31 2014

Author: Andrey Karpov

I have studied many errors caused by the use of the Copy-Paste method, and can assure you that programmers most often tend to make mistakes in the last fragment of a homogeneous code block. I have ne…
Static analysis as part of the development process in Unreal Engine

Date: Jun 27 2017

Author: Andrey Karpov

Unreal Engine continues to develop as new code is added and previously written code is changed. What is the inevitable consequence of ongoing development in a project? The emergence of new bugs in th…
Free PVS-Studio for those who develops open source projects

Date: Dec 22 2018

Author: Andrey Karpov

On the New 2019 year's eve, a PVS-Studio team decided to make a nice gift for all contributors of open-source projects hosted on GitHub, GitLab or Bitbucket. They are given free usage of PVS-Studio s…
Appreciate Static Code Analysis!

Date: Oct 16 2017

Author: Andrey Karpov

I am really astonished by the capabilities of static code analysis even though I am one of the developers of PVS-Studio analyzer myself. The tool surprised me the other day as it turned out to be sma…
Technologies used in the PVS-Studio code analyzer for finding bugs and potential vulnerabilities

Date: Nov 21 2018

Author: Andrey Karpov

A brief description of technologies used in the PVS-Studio tool, which let us effectively detect a large number of error patterns and potential vulnerabilities. The article describes the implementati…
Characteristics of PVS-Studio Analyzer by the Example of EFL Core Libraries, 10-15% of False Positives

Date: Jul 31 2017

Author: Andrey Karpov

After I wrote quite a big article about the analysis of the Tizen OS code, I received a large number of questions concerning the percentage of false positives and the density of errors (how many erro…
How PVS-Studio Proved to Be More Attentive Than Three and a Half Programmers

Date: Oct 22 2018

Author: Andrey Karpov

Just like other static analyzers, PVS-Studio often produces false positives. What you are about to read is a short story where I'll tell you how PVS-Studio proved, just one more time, to be more atte…
The way static analyzers fight against false positives, and why they do it

Date: Mar 20 2017

Author: Andrey Karpov

In my previous article I wrote that I don't like the approach of evaluating the efficiency of static analyzers with the help of synthetic tests. In that article, I give the example of a code fragment…
The Evil within the Comparison Functions

Date: May 19 2017

Author: Andrey Karpov

Perhaps, readers remember my article titled "Last line effect". It describes a pattern I've once noticed: in most cases programmers make an error in the last line of similar text blocks. Now I want t…
The Ultimate Question of Programming, Refactoring, and Everything

Date: Apr 14 2016

Author: Andrey Karpov

Yes, you've guessed correctly - the answer is "42". In this article you will find 42 recommendations about coding in C++ that can help a programmer avoid a lot of errors, save time and effort. The au…

Comments (0)

Next comments
This website uses cookies and other technology to provide you a more personalized experience. By continuing the view of our web-pages you accept the terms of using these files. If you don't want your personal data to be processed, please, leave this site.
Learn More →