To get a trial key
fill out the form below
Team License (a basic version)
Enterprise License (extended version)
* By clicking this button you agree to our Privacy Policy statement

Request our prices
New License
License Renewal
--Select currency--
USD
EUR
GBP
RUB
* By clicking this button you agree to our Privacy Policy statement

Free PVS-Studio license for Microsoft MVP specialists
* By clicking this button you agree to our Privacy Policy statement

To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

Message submitted.

Your message has been sent. We will email you at


If you haven't received our response, please do the following:
check your Spam/Junk folder and click the "Not Spam" button for our message.
This way, you won't miss messages from our team in the future.

>
>
>
Address arithmetic

Address arithmetic

Mar 31 2013

Address arithmetic is a method of calculating the address of an object with the help of arithmetic operations on pointers and use of pointers in comparison operations. Address arithmetic is also called pointer arithmetic.

According to C and C++ language standards, the result address must remain strictly within the bounds of a single array object (or just after it). Adding or subtracting from a pointer moves it by a multiple of the size of the data type it points to. For example, assume we have a pointer to an array of 4-byte integers. Incrementing this pointer will increment its value by 4 (the size of the element). This effect is often used to increment a pointer to point at the next element in a contiguous array of integers.

Pointer arithmetic cannot be performed on void pointers because the void type has no size, and thus the pointed address cannot be added to. However, there are non-standard compiler extensions allowing byte arithmetic on void* pointers.

Pointers and integer variables are not interchangeable. Null constant is the only exception from this rule: it can be assigned to the pointer, and the pointer can be compared to null constant. As a rule, to show that null is a special value for the pointer, NULL constant is written instead of number "0".

Pointer arithmetic provides the programmer with a single way of dealing with different types: adding and subtracting the number of elements required instead of the actual offset in bytes. In particular, the C definition explicitly declares that the syntax A[i], which is the i-th element of the array A, is equivalent to *(A+i), which is the content of the element pointed by A+i. This also implies that i[A] is equivalent to A[i].

At the same time, powerful pointer arithmetic can be a source of errors. Address arithmetic is a restrictive stage in the process of mastering 64-bit systems for the old C/C++ program code can contain a lot of errors relating to the use of pointers. To learn more about this problem see the article "20 issues of porting C++ code on the 64-bit platform".

Because of the challenges of using pointers, many modern high level computer languages (for example, Java or C#) do not permit direct access to memory using addresses.

References

Popular related articles
Free PVS-Studio for those who develops open source projects

Date: Dec 22 2018

Author: Andrey Karpov

On the New 2019 year's eve, a PVS-Studio team decided to make a nice gift for all contributors of open-source projects hosted on GitHub, GitLab or Bitbucket. They are given free usage of PVS-Studio s…
Appreciate Static Code Analysis!

Date: Oct 16 2017

Author: Andrey Karpov

I am really astonished by the capabilities of static code analysis even though I am one of the developers of PVS-Studio analyzer myself. The tool surprised me the other day as it turned out to be sma…
The Last Line Effect

Date: May 31 2014

Author: Andrey Karpov

I have studied many errors caused by the use of the Copy-Paste method, and can assure you that programmers most often tend to make mistakes in the last fragment of a homogeneous code block. I have ne…
The way static analyzers fight against false positives, and why they do it

Date: Mar 20 2017

Author: Andrey Karpov

In my previous article I wrote that I don't like the approach of evaluating the efficiency of static analyzers with the help of synthetic tests. In that article, I give the example of a code fragment…
Characteristics of PVS-Studio Analyzer by the Example of EFL Core Libraries, 10-15% of False Positives

Date: Jul 31 2017

Author: Andrey Karpov

After I wrote quite a big article about the analysis of the Tizen OS code, I received a large number of questions concerning the percentage of false positives and the density of errors (how many erro…
The Ultimate Question of Programming, Refactoring, and Everything

Date: Apr 14 2016

Author: Andrey Karpov

Yes, you've guessed correctly - the answer is "42". In this article you will find 42 recommendations about coding in C++ that can help a programmer avoid a lot of errors, save time and effort. The au…
Technologies used in the PVS-Studio code analyzer for finding bugs and potential vulnerabilities

Date: Nov 21 2018

Author: Andrey Karpov

A brief description of technologies used in the PVS-Studio tool, which let us effectively detect a large number of error patterns and potential vulnerabilities. The article describes the implementati…
The Evil within the Comparison Functions

Date: May 19 2017

Author: Andrey Karpov

Perhaps, readers remember my article titled "Last line effect". It describes a pattern I've once noticed: in most cases programmers make an error in the last line of similar text blocks. Now I want t…
Static analysis as part of the development process in Unreal Engine

Date: Jun 27 2017

Author: Andrey Karpov

Unreal Engine continues to develop as new code is added and previously written code is changed. What is the inevitable consequence of ongoing development in a project? The emergence of new bugs in th…
How PVS-Studio Proved to Be More Attentive Than Three and a Half Programmers

Date: Oct 22 2018

Author: Andrey Karpov

Just like other static analyzers, PVS-Studio often produces false positives. What you are about to read is a short story where I'll tell you how PVS-Studio proved, just one more time, to be more atte…

Comments (0)

Next comments
This website uses cookies and other technology to provide you a more personalized experience. By continuing the view of our web-pages you accept the terms of using these files. If you don't want your personal data to be processed, please, leave this site.
Learn More →
Accept