To get a trial key
fill out the form below
Team License (standard version)
Enterprise License (extended version)
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Request our prices
New License
License Renewal
--Select currency--
USD
EUR
GBP
RUB
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

** This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Message submitted.

Your message has been sent. We will email you at


If you haven't received our response, please do the following:
check your Spam/Junk folder and click the "Not Spam" button for our message.
This way, you won't miss messages from our team in the future.

>
>
>
Wade not in unknown waters. Part one

Wade not in unknown waters. Part one

Jan 27 2012
Author:

We decided to write several small posts on how C/C++ programmers play with fire without knowing it. The first post will be devoted to an attempt to explicitly call a constructor.

Programmers are lazy creatures. That's why they tend to solve a task using minimal code amount. This aim is praiseworthy and good. But the main point is not get too involved in the process and stop at the right time.

For example, programmers are too lazy to create a single initialization function in a class so that it could be called from various constructors later. They think: "What for do I need an extra function? I'd rather call one constructor from the other". Unfortunately, sometimes programmers can't solve even such a simple task. It is to detect such unsuccessful attempts that I'm implementing a new rule in PVS-Studio. Here is, for instance, a code sample I have found in the eMule project:

class CSlideBarGroup
{
public:
  CSlideBarGroup(CString strName,
    INT iIconIndex, CListBoxST* pListBox);
  CSlideBarGroup(CSlideBarGroup& Group);
  ...
}

CSlideBarGroup::CSlideBarGroup(CSlideBarGroup& Group)
{
  CSlideBarGroup(
    Group.GetName(), Group.GetIconIndex(), Group.GetListBox());
}

Let's examine more attentively how the last constructor is implemented. The programmer decided that the code

CSlideBarGroup(
  Group.GetName(), Group.GetIconIndex(), Group.GetListBox());

simply calls the other constructor. Nothing of the kind. A new unnamed object of the CslideBarGroup type is created and destroyed right after here.

It appears that the programmer has actually called the other constructor. But he/she has done not quite the same thing he/she intended: the class fields remain uninitialized.

Such errors are just half the trouble. Some people do know how to call the other constructor really. And they do it. I wish they didn't know :)

For instance, the above given code could be rewritten in this way:

CSlideBarGroup::CSlideBarGroup(CSlideBarGroup& Group)
{
  this->CSlideBarGroup::CSlideBarGroup(
    Group.GetName(), Group.GetIconIndex(), Group.GetListBox());
}

or in this way:

CSlideBarGroup::CSlideBarGroup(CSlideBarGroup& Group)
{
  new (this) CSlideBarGroup(
    Group.GetName(), Group.GetIconIndex(),
    Group.GetListBox());
}

Now one data initialization constructor is really calling the other constructor.

If you see a programmer doing this, deal him/her one flick on his/her forehead for yourself and one more flick on my behalf.

The cited examples contain very dangerous code and you should understand well how they work!

Being written for the purpose of petty optimization (programmers are too lazy to write a separate function), this code might do more harm than good. Let's see more closely why such constructs sometimes work but most often don't.

class SomeClass
{
  int x,y;
public:
  SomeClass() { new (this) SomeClass(0,0); }
  SomeClass(int xx, int yy) : x(xx), y(yy) {}
};

This code will work correctly. It is safe and works well, since the class contains primary data types and is not a descendant of other classes. In this case, a double constructor call is harmless.

Let's consider another code where an explicit constructor call causes an error (the sample is taken from the discussion on the StackOverflow website):

class Base 
{ 
public: 
 char *ptr; 
 std::vector vect; 
 Base() { ptr = new char[1000]; } 
 ~Base() { delete [] ptr; } 
}; 
 
class Derived : Base 
{ 
  Derived(Foo foo) { } 
  Derived(Bar bar) { 
     new (this) Derived(bar.foo); 
  } 
}

When we call the "new (this) Derived(bar.foo);" constructor, the Base object is already created and fields initialized. The repeated constructor call will cause double initialization. A pointer to the newly allocated memory area will be written into 'ptr'. As a result, we get memory leak. The result of double initialization of an object of the std::vector type cannot be predicted at all. But one thing is obvious: such code is inadmissible.

Conclusion

An explicit constructor call is needed only in very rare cases. In common programming practice, an explicit constructor call usually appears due to a programmer's wish to reduce the code's size. Don't do that! Create an ordinary initialization function.

This is how the correct code should look:

class CSlideBarGroup
{
  void Init(CString strName, INT iIconIndex,
            CListBoxST* pListBox);
public:
  CSlideBarGroup(CString strName, INT iIconIndex,
                 CListBoxST* pListBox)
  {
    Init(strName, iIconIndex, pListBox);
  }
  CSlideBarGroup(CSlideBarGroup& Group)
  {
    Init(Group.GetName(), Group.GetIconIndex(),
         Group.GetListBox());
  }
  ...
};

P.S. Explicit call of one constructor from the other in C++11 (delegation)

The new C++11 standard allows you to perform call of constructors from other constructors (known as delegation). It enables you to create constructors that use behavior of other constructors without added code. This is an example of correct code:

class MyClass {
  std::string m_s;
public:
    MyClass(std::string s) : m_s(s) {}
    MyClass() : MyClass("default") {}
};

Popular related articles
How PVS-Studio Proved to Be More Attentive Than Three and a Half Programmers

Date: Oct 22 2018

Author: Andrey Karpov

Just like other static analyzers, PVS-Studio often produces false positives. What you are about to read is a short story where I'll tell you how PVS-Studio proved, just one more time, to be more atte…
The Ultimate Question of Programming, Refactoring, and Everything

Date: Apr 14 2016

Author: Andrey Karpov

Yes, you've guessed correctly - the answer is "42". In this article you will find 42 recommendations about coding in C++ that can help a programmer avoid a lot of errors, save time and effort. The au…
Free PVS-Studio for those who develops open source projects

Date: Dec 22 2018

Author: Andrey Karpov

On the New 2019 year's eve, a PVS-Studio team decided to make a nice gift for all contributors of open-source projects hosted on GitHub, GitLab or Bitbucket. They are given free usage of PVS-Studio s…
PVS-Studio ROI

Date: Jan 30 2019

Author: Andrey Karpov

Occasionally, we're asked a question, what monetary value the company will receive from using PVS-Studio. We decided to draw up a response in the form of an article and provide tables, which will sho…
Characteristics of PVS-Studio Analyzer by the Example of EFL Core Libraries, 10-15% of False Positives

Date: Jul 31 2017

Author: Andrey Karpov

After I wrote quite a big article about the analysis of the Tizen OS code, I received a large number of questions concerning the percentage of false positives and the density of errors (how many erro…
Appreciate Static Code Analysis!

Date: Oct 16 2017

Author: Andrey Karpov

I am really astonished by the capabilities of static code analysis even though I am one of the developers of PVS-Studio analyzer myself. The tool surprised me the other day as it turned out to be sma…
PVS-Studio for Java

Date: Jan 17 2019

Author: Andrey Karpov

In the seventh version of the PVS-Studio static analyzer, we added support of the Java language. It's time for a brief story of how we've started making support of the Java language, how far we've co…
Static analysis as part of the development process in Unreal Engine

Date: Jun 27 2017

Author: Andrey Karpov

Unreal Engine continues to develop as new code is added and previously written code is changed. What is the inevitable consequence of ongoing development in a project? The emergence of new bugs in th…
The Evil within the Comparison Functions

Date: May 19 2017

Author: Andrey Karpov

Perhaps, readers remember my article titled "Last line effect". It describes a pattern I've once noticed: in most cases programmers make an error in the last line of similar text blocks. Now I want t…
The Last Line Effect

Date: May 31 2014

Author: Andrey Karpov

I have studied many errors caused by the use of the Copy-Paste method, and can assure you that programmers most often tend to make mistakes in the last fragment of a homogeneous code block. I have ne…

Comments (0)

Next comments

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
This website uses cookies and other technology to provide you a more personalized experience. By continuing the view of our web-pages you accept the terms of using these files. If you don't want your personal data to be processed, please, leave this site.
Learn More →
Accept