Our website uses cookies to enhance your browsing experience.
Accept
to the top
close form

Fill out the form in 2 simple steps below:

Your contact information:

Step 1
Congratulations! This is your promo code!

Desired license type:

Step 2
Team license
Enterprise license
** By clicking this button you agree to our Privacy Policy statement
close form
Request our prices
New License
License Renewal
--Select currency--
USD
EUR
* By clicking this button you agree to our Privacy Policy statement

close form
Free PVS‑Studio license for Microsoft MVP specialists
* By clicking this button you agree to our Privacy Policy statement

close form
To get the licence for your open-source project, please fill out this form
* By clicking this button you agree to our Privacy Policy statement

close form
I am interested to try it on the platforms:
* By clicking this button you agree to our Privacy Policy statement

close form
check circle
Message submitted.

Your message has been sent. We will email you at


If you haven't received our response, please do the following:
check your Spam/Junk folder and click the "Not Spam" button for our message.
This way, you won't miss messages from our team in the future.

Webinar: Parsing C++ - 10.10

>
>
Why do 64-bit operating systems use onl…

Why do 64-bit operating systems use only 48-bit addresses for addressing?

Aug 14 2012
Author:

Addresses used in a program, i.e. pointer values, are so called "virtual addresses". The processor contains a small amount of ultra-fast associative memory that stores conversions of several (usually 64) page virtual addresses into its physical addresses. Since 64 table rows are obviously not enough for real tasks, x86 architectures employ page tables located in the main memory. Each page table is a page itself and consists of page table entries. Since the number of entries in one table is limited and depends on the entry size and page size, tables are arranged in multiple levels. There are usually 2 or 3 levels, and sometimes even 4 levels (for 64-bit architectures).

Contemporary implementations of the x86-64 architecture use 48-bit physical addresses (which can be extended to 52 bits) that allow you to address up to 256 Tbytes of main memory. This size is currently considered excessive for real systems, while increase of the address capacity will cause page tables to bloat, which will in its turn lead to an increase of the number of levels as well.

References

Popular related articles


Comments (0)

Next comments next comments
close comment form