>
>
>
V3157. Suspicious division. Absolute va…


V3157. Suspicious division. Absolute value of the left operand is less than the right operand.

The analyzer has detected one of the two types of integer operations – either a division or modulo operation – in which the absolute value of the left operand is always less than the absolute value of the right operand.

Such operations will return the following results:

  • division will always return 0;
  • modulo operation will always return the left operand.

Such an expression is very likely to contain an error or is simply redundant.

Consider the following contrived example:

public void Method()
{
  int a = 10;
  int b = 20;
  var c = a / b;
  ....
}

In this snippet, the 'a / b' expression will always evaluate to 0 since 'a < b'. To turn this expression into a real division operation, we need to cast the type of the 'a' variable to 'double':

public void Method()
{
  int a = 10;
  int b = 20;
  var c = (double)a / b;
  ....
}

The following example is taken from a real program:

public override Shipper CreateInstance(int i)
{
  ....
  return new Shipper 
  {
    ....
    DateCreated = new DateTime(i + 1 % 3000, // <=
                               (i % 11) + 1, 
                               (i % 27) + 1, 
                               0, 
                               0, 
                               0, 
                               DateTimeKind.Utc),
    ....
  };
}

The error here has to do with the wrong assumption about operation precedence. In the 'i + 1 % 3000' expression, the '1 % 3000' part will be evaluated first, thus always returning 1. Therefore, the value of the 'i' variable will always be added to 1. This is one way to fix this bug:

public override Shipper CreateInstance(int i)
{
  ....
  return new Shipper 
  {
    ....
    DateCreated = new DateTime((i + 1) % 3000, // <=
                               (i % 11) + 1, 
                               (i % 27) + 1, 
                               0, 
                               0, 
                               0, 
                               DateTimeKind.Utc),
    ....
  };
}

Here is another real-life example:

private void ValidateMultiRecords(StorageEnvironment env, 
                                  IEnumerable<string> trees, 
                                  int documentCount, 
                                  int i)
{
  for (var j = 0; j < 10; j++)
  {
    foreach (var treeName in trees)
    {
      var tree = tx.CreateTree(treeName);
      using (var iterator = tree.MultiRead((j % 10).ToString())) // <=
      {
        ....
      }
    }
  }
}

In this snippet, the 'j' variable is incremented over the range [0..9]. Therefore, the result of the 'j % 10' expression will always be equal to the value of 'j'. This is what the simpler correct version may look like:

private void ValidateMultiRecords(StorageEnvironment env, 
                                  IEnumerable<string> trees, 
                                  int documentCount, 
                                  int i)
{
  for (var j = 0; j < 10; j++)
  {
    foreach (var treeName in trees)
    {
      var tree = tx.CreateTree(treeName);
      using (var iterator = tree.MultiRead(j.ToString())) // <=
      {
        ....
      }
    }
  }
}

This diagnostic is classified as:

You can look at examples of errors detected by the V3157 diagnostic.